1) Demuestre A \subseteq B \iff \wp(A) \in \wp(B)
Demostración
Por definición A \in \wp(A) \wedge B \in \wp(B)
Si A \subseteq B
\Rightarrow A \subseteq B \in \wp(B)
\Rightarrow A \in \wp(B)
Sea A_{k} \subseteq A
\Rightarrow A_{k} \in \wp(B)
\Rightarrow \wp(A) \subseteq \wp(B)
Ahora bien,
si \wp(A) \subseteq \wp(B)
\Rightarrow A \in \wp(A) \subseteq \wp(B)
\Rightarrow A \in \wp(B)
\Rightarrow A\subseteq B
2) Sean (A \wedge B) \in \wp(E)
Demuestre \wp(A) \cup \wp(B) = \wp(A \cup B) \Rightarrow (A \subseteq B) \vee (B \subseteq A)
Demostración
Por la contrapositiva
\neg [(A \subseteq B) \vee (B \subseteq A)] \Rightarrow \neg [\wp(A) \cup \wp(B) = \wp(A \cup B)]
\neg [(A \subseteq B) \vee (B \subseteq A)] \Rightarrow [\wp(A) \cup \wp(B) \not = \wp(A \cup B)]
(A \not \subseteq B) \wedge (B \not \subseteq A) \Rightarrow [\wp(A) \cup \wp(B) \not = \wp(A \cup B)]
\Rightarrow \exists a,b (\{a, b\} \not \in \wp(A) \cup \wp(B) \wedge \{a, b\} \in \wp(A \cup B))
\Rightarrow \wp(A) \cup \wp(B) \not = \wp(A \cup B)
\therefore \neg [(A \subseteq B) \vee (B \subseteq A)] \Rightarrow \neg [\wp(A) \cup \wp(B) = \wp(A \cup B)]
\therefore \wp(A) \cup \wp(B) = \wp(A \cup B) \Rightarrow (A \subseteq B) \vee (B \subseteq A)
3)Sea \{E_{i}: i \in I \} una familia de subconjuntos de E, donde E, I son conjuntos.
Demuestre que:
a-) \wp(\bigcap_{i \in I} E_{i}) = \bigcap_{i \in I} \wp(E_{i})
b-) \bigcup_{i \in I} \wp(E_{i}) \subseteq \wp(\bigcup_{i \in I} E_{i}) y, en general, la igualdad no se cumple.
Solución
a-)
Sea A \in \bigcap_{i \in I} \wp(E_{i})
\Rightarrow A \in \wp(E_{i}) \forall i \in I
\Rightarrow A \subseteq E_{i} \forall i \in I
\Rightarrow A \subseteq E_{i} \subseteq \bigcap_{i \in I} E_{i}
\Rightarrow A \in \wp(\bigcap_{i \in I} E_{i})
\Rightarrow \bigcap_{i \in I} \wp(E_{i}) \subseteq \wp(\bigcap_{i \in I} E_{i})
Análogamente
Sea A \in \wp(\bigcup_{i \in I} E_{i})
\Rightarrow A \subseteq E_{i} \subseteq \bigcap_{i \in I} E_{i}
\Rightarrow A \subseteq E_{i} \forall i \in I
\Rightarrow A \in \wp(E_{i}) \forall i \in I
\Rightarrow A \in \bigcap_{i \in I} \wp(E_{i})
\Rightarrow \wp(\bigcap_{i \in I} E_{i}) \subseteq \bigcap_{i \in I} \wp(E_{i})
\therefore \wp(\bigcap_{i \in I} E_{i}) = \bigcap_{i \in I} \wp(E_{i})
b-)
b.1-)
Sea A \in \bigcup_{i \in I} \wp(E_{i})
\Rightarrow \exists i (A \in \wp(E_{i}) \wedge A \subseteq E_{i})
\Rightarrow A \subseteq \bigcup_{i \in I} E_{i}
\Rightarrow A \in \wp(\bigcup_{i \in I} E_{i})
\therefore \bigcup_{i \in I} \wp(E_{i}) \subseteq \wp(\bigcup_{i \in I} E_{i})
b.2-)
En virtud de lo anterior, \bigcup_{i \in I} \wp(E_{i}) \subseteq \wp(\bigcup_{i \in I} E_{i})
Entonces por hipótesis,
debe haber al menos un caso en el que \bigcup_{i \in I} \wp(E_{i}) \not \supseteq \wp(\bigcup_{i \in I} E_{i})
Considérese el caso en el que \exists a, b, i, j (a \in E_{i} \wedge a \not \in E_{j} \wedge b \not \in E_{i} \wedge b \in E_{j})
Para dicho caso, \{a, b\} \not \in \bigcup_{i \in I} \wp(E_{i}) \wedge \{a, b\} \in \wp(\bigcup_{i \in I} E_{i})
Nota: \bigcup_{i \in I} \wp(E_{i}) \supseteq \wp(\bigcup_{i \in I} E_{i}) \iff \exists j \forall i (E_{i} \subseteq E_{j})
4) Demuestre que \forall D \in \wp(E), (D \subseteq A) \wedge (D \subseteq B) \Leftrightarrow D \subseteq A \cap B
Solución
Parta de D \subseteq A \cap B
Recuerde que (A \cap B \subseteq A) \wedge (A \cap B \subseteq B)
\Rightarrow (D \subseteq A \cap B \subseteq A) \wedge (D \subseteq A \cap B \subseteq B)
\Rightarrow (D \subseteq A) \wedge (D \subseteq B)
Para (D \subseteq A) \wedge (D \subset B) \Rightarrow D \subseteq A \cap B
Por la contrapositiva
\neg [D \subseteq A \cap B] \Rightarrow \neg [(D \subseteq A) \wedge (D \subseteq B)]
D \not \subseteq A \cap B \Rightarrow (D \not \subseteq A) \vee (D \not \subseteq B)
D \not \subseteq A \cap B
\Rightarrow (D \not \subseteq A \cap B \subseteq A) \wedge (D \not \subseteq A \cap B \subseteq B)
\Rightarrow (D \not \subseteq A) \wedge (D \not \subseteq B)
5) Si A \subseteq E \wedge B \subseteq E, A \subseteq B \Leftrightarrow \complement_{E}B \subseteq \complement_{E}A
Solución
Sea A \subset B
\Rightarrow \exists x (x \in B: x \not \in A)
Sea x_{1} (x_{1} \in B: x_{1} \not \in A)
\Rightarrow x_{1} \in \complement_{E}A \wedge x_{1} \not \in \complement_{E}B
\Rightarrow \complement_{E}B \subseteq \complement_{E}A
Para el recíproco
\complement_{E}B \subseteq \complement_{E}A \Rightarrow A \subseteq B
\Rightarrow \exists \omega (\omega \in \complement_{E}A: \omega \not \in \complement_{E}B)
Sea \omega_{1} (\omega_{1} \in \complement_{E}A: \omega_{1} \not \in \complement_{E}B)
\Rightarrow \omega_{1} \in \complement_{E}(\complement_{E}B) \wedge \omega_{1} \not \in \complement_{E}(\complement_{E}A)
\Rightarrow \omega_{1} \in B \wedge \omega_{1} \not \in A
\Rightarrow A \subseteq B
6) Demuestre que A \subset B \Leftrightarrow A - B = \emptyset
Solución
Considere A \subset B \Rightarrow A - B = \emptyset
Por la contrapositiva
A - B \not = \emptyset \Rightarrow A \subset B
Como A - B \not = \emptyset \Rightarrow x \in A - B
\Rightarrow x \in A \wedge x \not \in B
\Rightarrow A \subset B
Considere A - B = \emptyset \Rightarrow A \subset B
Asuma A \not \subset B y A - B = \emptyset
\Rightarrow \exists x (x \in A : x \not \in B)
\Rightarrow A - B \not = \emptyset
\Rightarrow \Leftarrow
\therefore A - B = \emptyset \Rightarrow A \subset B
7) Con A \subseteq E \wedge B \subseteq E, demuestre que A - B = A \cap \complement_{E}B
Solución
Considere A - B \not = \emptyset
Sea x \in A - B, es decir x \in A \wedge x \not \in B
Como x \not \in B
\Rightarrow x \in \complement_{E}B
Como x \in A
\Rightarrow x \in A \cap \complement_{E}B
Considere A - B = \emptyset, es decir A \subset B
\Rightarrow \exists \omega (\omega \in B \wedge \omega \not \in A)
\Rightarrow \omega \not \in \complement_{E}B \wedge \omega \not \in A
\Rightarrow A \cap \complement_{E}B = \emptyset
8) Muestre que A - (A - B) = (A \cap B)
Solución
Observe dos casos
(1) A - B = \emptyset
(2) A - B \not = \emptyset
Considere (1)
\Rightarrow \exists Z (Z \not \subseteq A \wedge Z \subseteq B)
\Rightarrow Z \not \subseteq A - B \wedge Z \not \subseteq A \cap B
\Rightarrow A \not \subseteq A - (A - B)
Considere (2)
\Rightarrow \exists Z (Z \subseteq A \wedge Z \not \subseteq B)
\Rightarrow Z \subseteq A - B \wedge Z \not \subseteq A \cap B
\Rightarrow Z \not \subseteq A - (A - B)
9) Muestre que A \cap (B - C) = (A \cap B) - (A \cap C)
Solución
Sea Z \subseteq A \cap (B - C)
\Rightarrow Z \subseteq A \wedge Z \subseteq B - C
\Rightarrow Z \subseteq B \wedge Z \not \subseteq C
\Rightarrow Z \subseteq A \cap B \wedge Z \not \subseteq A \cap C
\Rightarrow Z \subseteq (A \cap B) - (A \cap C)
\Rightarrow A \cap (B - C) \subseteq (A \cap B) - (A \cap C)
Considérese ahora Z \subseteq (A \cap B) - (A \cap C)
\Rightarrow Z \subseteq (A \cap B) \wedge Z \not \subseteq (A \cap C)
\Rightarrow Z \subseteq A \wedge Z \subseteq B \wedge Z \not \subseteq C
\Rightarrow Z \subseteq B - C
\Rightarrow \subseteq A \cap (B - C)
\Rightarrow (A \cap B) - ( A \cap C) \subseteq A \cap (B - C)
\therefore A \cap (B - C) = (A \cap B) - (A \cap C)
10) Halle \complement_{E}[((\complement_{E}A) \cup B) \cap (C \cup \complement_{E}D)]
Solución
Por De Morgan
= \complement_{E}((\complement_{E}A) \cup) \cup \complement_{E}(C \cup \complement_{E}D)
Por De Morgan
= (\complement_{E}(\complement_{E}A) \cap \complement_{E}B) \cup (\complement_{E}C \cap \complement_{E}(\complement_{E}D))
= (A \cap \complement_{E}B) \cup (\complement_{E}C \cap D)
= (A - B) \cup (D - C)
11) Sean A, B \in \wp(E)
Demuestre que A \Delta B = (A \cup B) - (A \cap B)
Solución
(A \cup B) - (A \cap B)
\Rightarrow (A \cup B) \cap \complement_{E}(A \cap B)
Por De Morgan
\Rightarrow (A \cup B) \cap (\complement_{E}A \cup \complement_{E}B)
Por ley distributiva
\Rightarrow [(A \cup B) \cap \complement_{E}A] \cup [(A \cup B) \cap \complement_{E}B]
Por ley distributiva
\Rightarrow (A \cap \complement_{E}A) \cup (B \cap \complement_{E}A) \cup (A \cap \complement_{E}B) \cup (B \cap \complement_{E}B)
\emptyset \cup (B \cap \complement_{E}A) \cup (A \cap \complement_{E}B) \cup \emptyset
\Rightarrow (B \cap \complement_{E}A) \cup (A \cap \complement_{E}B)
\Rightarrow (B - A) \cup (A - B)
\Rightarrow A \Delta B
12) Muestre que (A \Delta B) \cap C = (A \cap C) \Delta (B \cap C)
Solución
\Rightarrow ((A - B) \cup (B - A)) \cap C
Por ley distributiva
\Rightarrow (C \cap (A - B)) \cup ( C \cap (B - A))
\Rightarrow [(C \cap A) - (C \cap B)] \cup [(C \cap B) - (C \cap A)]
\Rightarrow (A \cap C) \Delta (B \cap C)
13) Muestre que A \times (B \cup C) = (A \times B) \cup (A \times C)
Solución
Tome A \times (B \cup C)
Sea a \in A, b \in B, c \in C
Observe b, c \in B \cup C
\Rightarrow \forall k \in A \times (B \cup C) [k = (a, b) \veebar (a, c)]
Ahora tome (A \times B) \cup (A \times C)
A \times B = \{(a, b)\} \wedge A \times C = \{a, c\}
\Rightarrow \forall k \in (A \times B) \cup (A \times C) [k = (a, b) \veebar (a, c)]
\therefore A \times (B \cup C) = (A \times B) \cup (A \times C)
14) Sea E un conjunto y sean A, B, C en \wp(E).
Demuestre que (A \Delta B) - (A \Delta C) = ((A \cap C) - B) \cup (B - (A \cup C))
Solución
Considere (A \Delta B) - (A \Delta C)
\Rightarrow [(A - B) \cup (B - A)] - [(A - C) \cup (C - A)]
Por De Morgan, involución y De Morgan
\Rightarrow [(A \cap \complement_{E}B) \cup (B \cap \complement_{E}A)] \cap [(\complement_{E}A \cup C) \cap (\complement_{E}C \cup A)]
Por distributiva
\Rightarrow [(\complement_{E}A \cup C) \cap (\complement_{E}C \cup A)] \cap A \cap \complement_{E}B] \cup [(\complement_{E}A \cup C) \cap (\complement_{E}A \cup C) \cap (\complement_{E}C \cup A) \cap B \cap \complement_{E}A]
Por distributiva
\Rightarrow [((A \cap \complement_{E}A) \cup (C \cap A)) \cap (\complement_{E}C \cup A) \cap \complement_{E}B] \cup [((\complement_{E}A \cap A) \cup (\complement_{E}A \cap \complement_{E}C)) \cap (\complement_{E}A \cup C) \cap B]
\Rightarrow [(C \cap A) \cap (\complement_{E}C \cup A) \cap \complement_{E}B] \cup [(\complement_{E}A \cap \complement_{E}C) \cap (\complement_{E}A \cup C) \cap B]
Por distributiva
\Rightarrow [((C \cap \complement_{E}C) \cup (C \cap A)) \cap A \cap \complement_{E}B] \cup [(\complement_{E}C \cap C) \cup (\complement_{E}C \cap \complement_{E}A) \cup \complement_{E}A \cap B]
\Rightarrow [(C \cap A) \cap A \cap \complement_{E}B] \cup [(\complement_{E}C \cap \complement_{E}A) \cap \complement_{E}A \cap B]
\Rightarrow [(C \cap A) - B] \cup [( \complement_{E}C \cap \complement_{E}A) \cap B]
Por De Morgan
\Rightarrow [(A \cap C) - B] \cup [B \cap \complement_{E}(A \cup C)]
\Rightarrow [(A \cap C) - B] \cup [B - (A \cup C)]
15) Demuestre que para cualesquiera tres conjuntos, no vacíos, A, B y C, se cumple A \subseteq B \Rightarrow [C - A \not = \emptyset \veebar A \cap B = A \cup C]
Solución
Suponga Z \subseteq A
\Rightarrow Z \subseteq A \subseteq B
\Rightarrow Z \subseteq B
\Rightarrow Z \subseteq A \cap B
Observe dos casos, C - A \not = \emptyset \veebar C - A = \emptyset
Si C - A = \emptyset
\Rightarrow C \subset A
\Rightarrow Z \subseteq C \vee C \subseteq Z
\Rightarrow A \cap B = A \cap C
Si C - A \not = \emptyset
\Rightarrow C \supset A
\Rightarrow A \cap B \not = A \cup C
\therefore A \subseteq B \Rightarrow [C - A \not = \emptyset \veebar A \cap B = A \cup C]
16) Si A, B y D están en \wp(E), demuestre que (A \Delta B) - D = (A \cup D) \Delta (B \cup D)
Solución
Parta de (A \cup D) \Delta (B \cup D)
\Rightarrow [(A \cup D) - (B \cup D)] \cup [(B \cup D) - (A \cup D)]
\Rightarrow [(A \cup D) \cap \complement_{E}(B \cup D)] \cup [(B \cup D) \cap \complement_{E}(A \cup D)]
Por De Morgan
\Rightarrow [(A \cup D) \cap (\complement_{E}B \cap \complement_{E}D)] \cup [(B \cup D) \cap (\complement_{E}A \cap \complement_{E}D)]
Por distributiva
\Rightarrow [((\complement_{E}D \cap D) \cup (\complement_{E}D \cap A)) \cap \complement_{E}B] \cup [((\complement_{E}D \cap D) \cup (\complement_{E}D \cap B)) \cap \complement_{E}A]
\Rightarrow [\complement_{E}D \cap A \cap \complement_{E}B] \cup [\complement_{E}D \cap B \cap \complement_{E}A]
Por distributiva
\Rightarrow \complement_{E}D \cap [(A - B) \cup (B - A)]
\Rightarrow A \Delta B -D
17) Sean A, B y C tres subconjuntos, no vacíos, de un conjunto E.
Muestre que si (A \times B) \cup (B \times A) = C \times C \Rightarrow A = B = C
Solución
Asuma que \exists a, b, c (a \in A, b \in B, c \in C : a \not = b \not = c)
\Rightarrow A \times B = \{(a, b)\} \wedge B \times A = \{(b, a)\} \wedge C \times C = \{(c, c)\}
\Rightarrow (A \times B) \cup (B \times A) = \{(a, b), (b, a)\}
Por hipótesis
\{(a, b), (b, a)\} = \{(c, c)\}
Por definición de producto cartesiano
\Rightarrow a = b = c
\Rightarrow \Leftarrow
\Rightarrow \forall a, b, c (a \in A, b \in B, c \in C : a = b = c)
\therefore (A \times B) \cup (B \times A) = C \times C \Rightarrow A = B = C
No comments:
Post a Comment